我原本不喜歡在網路/網誌上
寫這些"特別"的心情紓發
但把MSN紀錄拿來看了又看、想了又想。
發現不對...我再不寫著
又來一句"我不知道",在這邊想得要死的我就等於白癡了!!
不由得得說,還好有發生,
也讓我思考我漏掉什麼東西。
好好想、好好講,甚至講個"事實"可以變成是說教...
討論事情變成小題大作
高興時,啥都好、啥都隨便
不高興時,砍我回文、刪我FB好友
妳不爽妳朋友講了些白癡話被我回文酸
刪回文還不夠,把我帳號從清單刪除!!
我的感覺很簡單,
妳想把朋友擺第一,OK阿!!
請問,妳下一步還打算幹嘛??
2010年8月31日 星期二
2010年8月26日 星期四
57-102
不錯 標題很吸引我
http://www.educationusa.tw/dispPageBox/CtUstudy.aspx?ddsPageID=USTUDYAJ&cat=NWSMSGCATD&dbid=3111118210
這次邀請到Perrhau分享她考托福的經驗談
*歷次成績
R L S W total
Apr 27, 2008 21 8 11 17 57
March 27, 2010 25 24 19 22 90
May 16, 2010 26 24 20 27 97
June 12, 2010 30 24 20 28 102
July 24, 2010 26 21 23 27 97
*背景
Perryhau大學指考3X分,第一次考托福是大四的時候,去年12月考完GRE後,開始專心準備托福,有去補習。
*準備方法
Reading
材料:黃金56篇、Cambridge
只寫黃金56篇兩遍跟Cambridge一遍。做的方式是,計時每篇20分鐘,一次寫三篇,先看題目再看文章。寫完之後最重要的是檢討,Perryhau 會把所有不懂的單字都抄出來另外背(不管是不是單字題),把每一句都弄到懂為止,檢討的時候不管花多少時間,一定要好好檢討一遍。她在寫第二次的時候,文章內容也忘得差不多了,只有少部分題目有印象,所以還是很有價值。尤其在考試前一周,Perryhau每天都會安排幾篇來保持感覺。此外,有朋友在北美考試有遇到裡面相關的題目,所以大家還是讀詳細點比較好。
Cambridge題目不錯也有難度,Perryhau在補習期間就把它寫完了,發現有些題目真的太過刁鑽,加上之後發現黃金56篇很有價值,就把重心都放在黃金上。
Listening
材料:綠寶、Barron’s、知音II、TPO1~14、CNN Student News、Timmy and Moby
聽力其實是她的罩門,第一次考的時候,完全聽不懂在講什麼,只好隨便猜一猜,所以口說跟寫作也跟著考差了。雖然成績一直上不去,還是跟大家分享一下準備方法。
最一開始的兩個月,她都只準備聽力跟補習班上課會用到的模考等作業,花了很多時間在聽力上。聽力最重要的是每天聽,她準備的方式是,第一二次專心聽並寫題目(先不對答案,第三次聽完再對),第三次一句一句聽,聽不懂就倒回去聽,聽了5.6遍真的聽不懂再看文本,整篇聽完後,Perryhau會加快 1.2~1.4倍把整篇在聽一次。(MP3檔的話,用GOM PLAYER音質就不會差很多了,而且也很方便,可以調要倒回去幾秒,不過有時候會破音,只需重開檔案即可)
最初兩個月,早中晚都會撥個2~3個小時聽聽力,後來開始準備其他的部分之後,至少還是會早中晚各一小時準備。同一份教材做第二第三次時,也是用相同的方法。過程中遇到的單字,一樣會把他抄出來另外背。
綠寶:可以當作背景知識來聽,文章基本上還不錯,前後大概全部聽過了兩遍。
Barron’s:補習班模考時就聽完了,上課講解完,一樣會回家照自己方法聽過一遍,只是內容真的太長,後來補習結束就沒有再聽。
知音II:全部聽了三次,題目也有點偏,可以不用太介意。
TPO:當前面底都打得差不多的時候再開始寫TPO,不然會浪費題目。TPO Perryhau聽了快10次,考前一周跟在進考場的等待時間,都會找幾篇比較不熟的來保持一下感覺。
CNN Student News: Perryhau很喜歡這個PODCAST,雖然是新聞,但主題都還滿有趣的,可以當作休閒,也可以順便多了解一點美國,她每天都會聽,但現在因美國放暑假,所以要等到8月中才會有新的出來。
Timmy and Moby:很有趣的背景知識影片,累的時候可以用來休息一下。
Speaking
材料:黃金80題、口語真經、橘寶
口說Perryhau有先準備好模板,但模板只是用來承接前後用的。準備過程Perryhau會錄音,聽自己的流暢度跟文法的錯誤,剛開始一題會錄到一小時左右,就一直錄到自己滿意,就可以換下一題了。經過這幾次考試,她覺得口說應該注重在把答案講完整,其他的稍微沒那麼重要,最後一次拿23分,雖然講的沒有很順,但只有最後一題差一點沒把答案講完而已。
黃金80題:把想到的答案都打出來,沒有真正的拿來練習,但過程中對之後的練習很有幫助,可以很快的連結到例子。
口語真經:全部練習了兩遍,到考前一周也是拿裡面的題目練習。
橘寶:把想到的答案都寫下來,考前快速的瀏覽一遍,考試的時候聯想比較快,運氣好會碰到一樣的題目,Perryhau總共就遇到兩次橘寶裡的。
Writing
材料:橘寶
寫作是Perryhau覺得補習班真的有幫到忙的地方,雖然有人不喜歡補習班老師的上課方式,但他一直重複的念,基本上這些錯誤到最後都可以避免掉。補習班老師的作文她也有上(雖然人很少),他給我一個很重要的觀念:不必要用很難的單字文法,只要能確保沒有錯太多,基本上分數就不會太低;還有多寫生活的例子,例子是最好增加字數的方法。
整合寫作
模板部分只準備開頭一句、各段的開頭跟反駁的開頭。重要的不是在字數,Perryhau後三次考試的字數都只有兩百初而已,要把真正關鍵的點寫出來,如果沒聽到的話,就用自己聽到的部分想辦法寫出一個理由來。
獨立寫作
這部分模板只準備第一段一句跟各段的開頭,有些人會用模板來衝字數,Perryhau覺得這樣的話可能會讓你的文章變得不連貫,所以字數部分還是用自己的生活經驗來衝吧!還有一個重點,一定要正反兩面的意見都要寫,自己認同的那方寫兩段,字數一樣達到300就可以,花時間求多,不如花時間求正確。再來就是每個寫出來的點一定要有一個例子(不管正反面),例子隨便掰,不用覺得不是真正的例子就不敢寫,ETS只是想看有例子可以佐證妳的論述而已。考前一周至少從橘寶中挑一篇出來練習。
橘寶:看過所有題目,把答案用中文寫出來(包含例子),之後考前快速看過,熟悉一下想到的點跟例子。
總結
托福最重要的還是自己花時間練習,補習班只是幫助更快熟悉托福而已,補習與否要自己評估,當你覺得補習這幾個小時在家裡自己練習可以獲得更多,那就不用考慮,留在家裡自己練習吧!
有問題的話,可寫信詢問,
Perryhau@yahoo.com
祝大家考試順利!!!
http://www.educationusa.tw/dispPageBox/CtUstudy.aspx?ddsPageID=USTUDYAJ&cat=NWSMSGCATD&dbid=3111118210
這次邀請到Perrhau分享她考托福的經驗談
*歷次成績
R L S W total
Apr 27, 2008 21 8 11 17 57
March 27, 2010 25 24 19 22 90
May 16, 2010 26 24 20 27 97
June 12, 2010 30 24 20 28 102
July 24, 2010 26 21 23 27 97
*背景
Perryhau大學指考3X分,第一次考托福是大四的時候,去年12月考完GRE後,開始專心準備托福,有去補習。
*準備方法
Reading
材料:黃金56篇、Cambridge
只寫黃金56篇兩遍跟Cambridge一遍。做的方式是,計時每篇20分鐘,一次寫三篇,先看題目再看文章。寫完之後最重要的是檢討,Perryhau 會把所有不懂的單字都抄出來另外背(不管是不是單字題),把每一句都弄到懂為止,檢討的時候不管花多少時間,一定要好好檢討一遍。她在寫第二次的時候,文章內容也忘得差不多了,只有少部分題目有印象,所以還是很有價值。尤其在考試前一周,Perryhau每天都會安排幾篇來保持感覺。此外,有朋友在北美考試有遇到裡面相關的題目,所以大家還是讀詳細點比較好。
Cambridge題目不錯也有難度,Perryhau在補習期間就把它寫完了,發現有些題目真的太過刁鑽,加上之後發現黃金56篇很有價值,就把重心都放在黃金上。
Listening
材料:綠寶、Barron’s、知音II、TPO1~14、CNN Student News、Timmy and Moby
聽力其實是她的罩門,第一次考的時候,完全聽不懂在講什麼,只好隨便猜一猜,所以口說跟寫作也跟著考差了。雖然成績一直上不去,還是跟大家分享一下準備方法。
最一開始的兩個月,她都只準備聽力跟補習班上課會用到的模考等作業,花了很多時間在聽力上。聽力最重要的是每天聽,她準備的方式是,第一二次專心聽並寫題目(先不對答案,第三次聽完再對),第三次一句一句聽,聽不懂就倒回去聽,聽了5.6遍真的聽不懂再看文本,整篇聽完後,Perryhau會加快 1.2~1.4倍把整篇在聽一次。(MP3檔的話,用GOM PLAYER音質就不會差很多了,而且也很方便,可以調要倒回去幾秒,不過有時候會破音,只需重開檔案即可)
最初兩個月,早中晚都會撥個2~3個小時聽聽力,後來開始準備其他的部分之後,至少還是會早中晚各一小時準備。同一份教材做第二第三次時,也是用相同的方法。過程中遇到的單字,一樣會把他抄出來另外背。
綠寶:可以當作背景知識來聽,文章基本上還不錯,前後大概全部聽過了兩遍。
Barron’s:補習班模考時就聽完了,上課講解完,一樣會回家照自己方法聽過一遍,只是內容真的太長,後來補習結束就沒有再聽。
知音II:全部聽了三次,題目也有點偏,可以不用太介意。
TPO:當前面底都打得差不多的時候再開始寫TPO,不然會浪費題目。TPO Perryhau聽了快10次,考前一周跟在進考場的等待時間,都會找幾篇比較不熟的來保持一下感覺。
CNN Student News: Perryhau很喜歡這個PODCAST,雖然是新聞,但主題都還滿有趣的,可以當作休閒,也可以順便多了解一點美國,她每天都會聽,但現在因美國放暑假,所以要等到8月中才會有新的出來。
Timmy and Moby:很有趣的背景知識影片,累的時候可以用來休息一下。
Speaking
材料:黃金80題、口語真經、橘寶
口說Perryhau有先準備好模板,但模板只是用來承接前後用的。準備過程Perryhau會錄音,聽自己的流暢度跟文法的錯誤,剛開始一題會錄到一小時左右,就一直錄到自己滿意,就可以換下一題了。經過這幾次考試,她覺得口說應該注重在把答案講完整,其他的稍微沒那麼重要,最後一次拿23分,雖然講的沒有很順,但只有最後一題差一點沒把答案講完而已。
黃金80題:把想到的答案都打出來,沒有真正的拿來練習,但過程中對之後的練習很有幫助,可以很快的連結到例子。
口語真經:全部練習了兩遍,到考前一周也是拿裡面的題目練習。
橘寶:把想到的答案都寫下來,考前快速的瀏覽一遍,考試的時候聯想比較快,運氣好會碰到一樣的題目,Perryhau總共就遇到兩次橘寶裡的。
Writing
材料:橘寶
寫作是Perryhau覺得補習班真的有幫到忙的地方,雖然有人不喜歡補習班老師的上課方式,但他一直重複的念,基本上這些錯誤到最後都可以避免掉。補習班老師的作文她也有上(雖然人很少),他給我一個很重要的觀念:不必要用很難的單字文法,只要能確保沒有錯太多,基本上分數就不會太低;還有多寫生活的例子,例子是最好增加字數的方法。
整合寫作
模板部分只準備開頭一句、各段的開頭跟反駁的開頭。重要的不是在字數,Perryhau後三次考試的字數都只有兩百初而已,要把真正關鍵的點寫出來,如果沒聽到的話,就用自己聽到的部分想辦法寫出一個理由來。
獨立寫作
這部分模板只準備第一段一句跟各段的開頭,有些人會用模板來衝字數,Perryhau覺得這樣的話可能會讓你的文章變得不連貫,所以字數部分還是用自己的生活經驗來衝吧!還有一個重點,一定要正反兩面的意見都要寫,自己認同的那方寫兩段,字數一樣達到300就可以,花時間求多,不如花時間求正確。再來就是每個寫出來的點一定要有一個例子(不管正反面),例子隨便掰,不用覺得不是真正的例子就不敢寫,ETS只是想看有例子可以佐證妳的論述而已。考前一周至少從橘寶中挑一篇出來練習。
橘寶:看過所有題目,把答案用中文寫出來(包含例子),之後考前快速看過,熟悉一下想到的點跟例子。
總結
托福最重要的還是自己花時間練習,補習班只是幫助更快熟悉托福而已,補習與否要自己評估,當你覺得補習這幾個小時在家裡自己練習可以獲得更多,那就不用考慮,留在家裡自己練習吧!
有問題的話,可寫信詢問,
Perryhau@yahoo.com
祝大家考試順利!!!
怎麼分類
以加州為例
public schools:
University of California (UC) systems
California State University (CSU) systems
private schools:
such as Stanford, USC, and Caltech
PS.LEAGUE
Ivy League schools are known for their academics
public schools:
University of California (UC) systems
California State University (CSU) systems
private schools:
such as Stanford, USC, and Caltech
PS.LEAGUE
Ivy League schools are known for their academics
2010年8月24日 星期二
Jr-Kai Yu
My research is focused on developmental mechanisms of the cephalochordate amphioxus. Amphioxus is a basal chordate and is the best available stand-in for the proximate invertebrate ancestor of the vertebrates. The body plans of amphioxus and vertebrates share chordate key features (e.g. dorsal nerve cord, notochord, segmented somites, and pharyngeal gill slits). However, vertebrates have additional characters not present in amphioxus- namely, a more elaborate head and forebrain, migratory neural crest, and neurogenic placodes. My goal in studying the developmental genetics of amphioxus is to elucidate the basic patterning mechanisms for the chordate body plan. Because of its important evolutionary position, comparative studies of amphioxus with vertebrates will also provide important insights to understand the origin of the patterning mechanisms that lead to the vertebrate body plan.
One of the specific questions I would like to address with amphioxus as a model system is the origin of neural crest. Arising at the neural plate border, vertebrate neural crest cells undergo an epithelial to mesenchymal transition (EMT) to become a migratory cell population that forms numerous differentiated cell types, including the craniofacial skeleton, much of the peripheral nervous system, and pigment cells of the skin. Evolution of the neural crest is a hallmark of vertebrates, responsible for many complex structures of the vertebrate head that are lacking in invertebrate chordates, like amphioxus. By comparing the genetic controls operating during development at the edges of the neural plate in embryos of amphioxus and traditional vertebrate models, we can start to pin-point which part of the gene regulatory network might have been changed over time.
cDNA database for the cephalochordate amphioxus Branchiostoma floridae
Selected Publications
1. J. K. S. Yu.*, in press, "The evolutionary origin of the vertebrate neural crest and its developmental gene regulatory network - insights from amphioxus", Zoology. ( SCI )
2. B. Bajoghli, N. Aghaallaei, I. Hess, I. Rode, N. Netuschil, B. H. Tay, B. Venkatesh, J. K. Yu, S. L. Kaltenbach, N. D. Holland, D. Diekhoff, C. Happe, M. Schorpp, T. Boehm, 2009, "Evolution of genetic networks underlying the emergence of thymopoiesis in vertebrates.", Cell, 138, 186-197. ( SCI )
3. S. L. Kaltenbach, J. K. Yu, N. D. Holland*, 2009, "The origin and migration of the earliest-developing sensory neurons in the peripheral nervous system of amphioxus", Evol. Dev., 11, 142-151. ( SCI )
4. J. K. Yu*, M. C. Wang, T. Shin-i, Y. Kohara, L. Z. Holland*, N. Satoh* and Y. Satou, 2008, "A cDNA resource for the cephalochordate amphioxus Branchiostoma floridae", Dev Genes Evol., 218, 723-727. ( SCI )
5. J. K. Yu, D. Meulemans, S. J. McKeown and M. Bronner-Fraser*, 2008, "Insights from the amphioxus genome on the origin of vertebrate neural crest", Genome Research, 18, 1127-1132. ( SCI )
6. N. H. Putnam, T. Butts, D. E. K. Ferrier, R. F. Furlong, U. Hellsten, T. Kawashima, M. Robinson-Rechavi, E. Shoguchi, A. Terry, J. K. Yu, È Benito-Gutiérrez, I. Dubchak, J. Garcia-Fernàndez, I. V. Grigoriev, A. C. Horton, P. J. D. Jong, J. Jurka, V. Kapitonov, Y. Kohara, Y. Kuroki, E. Lindquist, S. Lucas, K. Osoegawa, L. A. Pennacchio, A. A. Salamov, Y. Satou, T. Sauka-Spengler, J. Schmutz, T. Shin-I, A. Toyoda, J. J. Gibson-Brown, M. Bronner-Fraser, A. Fujiyama, L. Z. Holland, P. W. H. Holland, N. Satoh* and D. S. Rokhsar*, 2008, "The amphioxus genome and the evolution of the chordate karyotype", Nature, 453, 1064-1071. ( SCI )
7. L. Z. Holland*, R. Albalat, K. Azumi, È. Benito-Gutiérrez, M. J. Blow, M. Bronner-Fraser, F. Brunet, T. Butts, S. Candiani, L. J. Dishaw, D. E. K. Ferrier, J. Garcia-Fernàndez, J. J. Gibson-Brown, C. Gissi, A. Godzik, F. Hallböök, D. Hirose, K. Hosomichi, T. Ikuta, H. Inoko, M. Kasahara, J. Kasamatsu, T. Kawashima, A. Kimura, M. Kobayashi, Z. Kozmik, K. Kubokawa, V. Laudet, G. W. Litman, A. C. McHardy, D. Meulemans, M. Nonaka, R. P. Olinski, Z. Pancer, L. A. Pennacchio, M. Pestarino, J. P. Rast, I. Rigoutsos, M. Robinson-Rechavi, G. Roch, H. Saiga, Y. Sasakura, M. Satake, Y. Satou, M. Schubert, N. Sherwood, T. Shiina, N. Takatori, J. Tello, P. Vopalensky, S. Wada, A. Xu, Y. Ye, K. Yoshida, F. Yoshizaki, J. K. Yu, Q. Zhang, C. M. Zmasek, N. H. Putnam, D. S. Rokhsar, N. Satoh* and P. W. H. Holland*, 2008, "The amphioxus genome illuminates vertebrate origins and cephalochordate biology", Genome Research, 18, 1100-1111. ( SCI )
8. J. K. Yu, F. Mazet, Y. T. Chen, S. W. Huang, K. C. Jung and S. M*. Shimeld, 2008, "The Fox genes of Branchiostoma floridae", Dev. Genes Evol., 218, 629-638. ( SCI)
9. J. K. Yu, Y. Satou, N. D. Holland, T. Shin-I, Y. Kohara, N. Satoh, M. Bronner-Fraser and L. Z. Holland*, 2007, "Axial patterning in cephalochordates and the evolution of the organizer", Nature, 445, 613-617. ( SCI)
10. M. Schubert, J. K. Yu, N. D. Holland, V. Laudet, H. Escriva and L. Z. Holland*, 2005, "Retinoic acid-signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus", Development, 132, 61-73. ( SCI )
One of the specific questions I would like to address with amphioxus as a model system is the origin of neural crest. Arising at the neural plate border, vertebrate neural crest cells undergo an epithelial to mesenchymal transition (EMT) to become a migratory cell population that forms numerous differentiated cell types, including the craniofacial skeleton, much of the peripheral nervous system, and pigment cells of the skin. Evolution of the neural crest is a hallmark of vertebrates, responsible for many complex structures of the vertebrate head that are lacking in invertebrate chordates, like amphioxus. By comparing the genetic controls operating during development at the edges of the neural plate in embryos of amphioxus and traditional vertebrate models, we can start to pin-point which part of the gene regulatory network might have been changed over time.
cDNA database for the cephalochordate amphioxus Branchiostoma floridae
Selected Publications
1. J. K. S. Yu.*, in press, "The evolutionary origin of the vertebrate neural crest and its developmental gene regulatory network - insights from amphioxus", Zoology. ( SCI )
2. B. Bajoghli, N. Aghaallaei, I. Hess, I. Rode, N. Netuschil, B. H. Tay, B. Venkatesh, J. K. Yu, S. L. Kaltenbach, N. D. Holland, D. Diekhoff, C. Happe, M. Schorpp, T. Boehm, 2009, "Evolution of genetic networks underlying the emergence of thymopoiesis in vertebrates.", Cell, 138, 186-197. ( SCI )
3. S. L. Kaltenbach, J. K. Yu, N. D. Holland*, 2009, "The origin and migration of the earliest-developing sensory neurons in the peripheral nervous system of amphioxus", Evol. Dev., 11, 142-151. ( SCI )
4. J. K. Yu*, M. C. Wang, T. Shin-i, Y. Kohara, L. Z. Holland*, N. Satoh* and Y. Satou, 2008, "A cDNA resource for the cephalochordate amphioxus Branchiostoma floridae", Dev Genes Evol., 218, 723-727. ( SCI )
5. J. K. Yu, D. Meulemans, S. J. McKeown and M. Bronner-Fraser*, 2008, "Insights from the amphioxus genome on the origin of vertebrate neural crest", Genome Research, 18, 1127-1132. ( SCI )
6. N. H. Putnam, T. Butts, D. E. K. Ferrier, R. F. Furlong, U. Hellsten, T. Kawashima, M. Robinson-Rechavi, E. Shoguchi, A. Terry, J. K. Yu, È Benito-Gutiérrez, I. Dubchak, J. Garcia-Fernàndez, I. V. Grigoriev, A. C. Horton, P. J. D. Jong, J. Jurka, V. Kapitonov, Y. Kohara, Y. Kuroki, E. Lindquist, S. Lucas, K. Osoegawa, L. A. Pennacchio, A. A. Salamov, Y. Satou, T. Sauka-Spengler, J. Schmutz, T. Shin-I, A. Toyoda, J. J. Gibson-Brown, M. Bronner-Fraser, A. Fujiyama, L. Z. Holland, P. W. H. Holland, N. Satoh* and D. S. Rokhsar*, 2008, "The amphioxus genome and the evolution of the chordate karyotype", Nature, 453, 1064-1071. ( SCI )
7. L. Z. Holland*, R. Albalat, K. Azumi, È. Benito-Gutiérrez, M. J. Blow, M. Bronner-Fraser, F. Brunet, T. Butts, S. Candiani, L. J. Dishaw, D. E. K. Ferrier, J. Garcia-Fernàndez, J. J. Gibson-Brown, C. Gissi, A. Godzik, F. Hallböök, D. Hirose, K. Hosomichi, T. Ikuta, H. Inoko, M. Kasahara, J. Kasamatsu, T. Kawashima, A. Kimura, M. Kobayashi, Z. Kozmik, K. Kubokawa, V. Laudet, G. W. Litman, A. C. McHardy, D. Meulemans, M. Nonaka, R. P. Olinski, Z. Pancer, L. A. Pennacchio, M. Pestarino, J. P. Rast, I. Rigoutsos, M. Robinson-Rechavi, G. Roch, H. Saiga, Y. Sasakura, M. Satake, Y. Satou, M. Schubert, N. Sherwood, T. Shiina, N. Takatori, J. Tello, P. Vopalensky, S. Wada, A. Xu, Y. Ye, K. Yoshida, F. Yoshizaki, J. K. Yu, Q. Zhang, C. M. Zmasek, N. H. Putnam, D. S. Rokhsar, N. Satoh* and P. W. H. Holland*, 2008, "The amphioxus genome illuminates vertebrate origins and cephalochordate biology", Genome Research, 18, 1100-1111. ( SCI )
8. J. K. Yu, F. Mazet, Y. T. Chen, S. W. Huang, K. C. Jung and S. M*. Shimeld, 2008, "The Fox genes of Branchiostoma floridae", Dev. Genes Evol., 218, 629-638. ( SCI)
9. J. K. Yu, Y. Satou, N. D. Holland, T. Shin-I, Y. Kohara, N. Satoh, M. Bronner-Fraser and L. Z. Holland*, 2007, "Axial patterning in cephalochordates and the evolution of the organizer", Nature, 445, 613-617. ( SCI)
10. M. Schubert, J. K. Yu, N. D. Holland, V. Laudet, H. Escriva and L. Z. Holland*, 2005, "Retinoic acid-signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus", Development, 132, 61-73. ( SCI )
Yi-Hsien Su
Development of animal body plans are controlled by large networks of regulatory genes. Gene regulatory networks (GRNs) describe signaling pathways leading to the activation of DNA-recognizing regulatory proteins (transcription factors) and the interactions between the transcription factors and the modular DNA sequence elements that control spatial and temporal expression of regulatory genes. A given set of regulatory genes expressed in certain cells at a certain time during development specifies cell differentiation, organogenesis, and body plan formation.
Sea urchins have been a research model in developmental biology for over a century. They are highly fecund, producing millions of gametes each year. Due to the remarkable usefulness of the echinoderm embryo for modern molecular, cellular and evolutionary biology studies, the genome of the sea urchin Strongylocentrotus purpuratus was sequenced in 2006. The current gene regulatory network (GRN) of the sea urchin Strongylocentrotus purpuratus embryo describes the specification of the endomesodermal territories. However, the specification of the adjacent ectodermal territories of the embryo has been far less explored. Recently, a large-scale gene regulatory network analysis was conducted and an ectoderm specification GRN model was proposed. In the ectoderm GRN, two TGF-ß superfamily members, Nodal and BMP2/4, play key roles in the specification of the oral and aboral ectoderm, respectively. The deduced GRN model provides the first peek at the overall picture of oral and aboral ectoderm specification in the sea urchin embryo and also raises several unanswered questions.
My lab is interested in the roles of Nodal and BMP2/4 in specifying the development of oral and aboral ectoderm in the sea urchin embryo. We are also interested in comparative studies on Nodal in other animals. We use local Taiwanese animals, a hemichordate and a small abalone, to study the function of Nodal in their development. The overall goal of these studies is not only to use a traditional model system, the sea urchin, to investigate important questions that have emerged from GRN analysis, but to also use local animal species with crucial phylogenetic positions to answer fundamental questions. These studies will complement the current ectoderm GRN in the sea urchin embryo, provide further information on how TGF family proteins pattern a specific cell lineage, and shed light on the changes of Nodal function during evolution.
Selected Publications
1. Su Y.H. (2009) Gene regulatory networks for ectoderm specification in sea urchin embryos. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1789, 261-267.
2. Su Y.H., Li E., Geiss G.K., Longabaugh W.J., Kramer A, Davidson E.H. (2009) A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo. Developmental Biology, 329, 410-421.
3. Churamani, D., Boulware, M.J., Geach, T.J., Martin, A.C., Moy, G.W., Su, Y.H., Vacquier, V.D., Marchant, J.S., Dale, L., Patel, S. (2007) Molecular characterization of a novel intracellular ADP-ribosyl cyclase. PLoS One, 2(8): e797.
4. Nam J, Su Y.H., Lee P.Y., Robertson A.J., Coffman J.A., Davidson E.H. (2007) Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network. Developmental Biology, 306, 860-869.
5. Roux, M.M., Townley, I.K., Raisch, M., Reade, A., Bradham, C., Humphreys, G., Gunaratne, H.J., Killian, C.E., Moy, G., Su, Y.H., Ettensohn, C.A., Wilt, F., Vacquier, V.D., Burke, R.D., Wessel, G., and Foltz, K.R. (2006) A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Developmental Biology, 300, 416-433.
6. Sodergren, E., et al., (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science, 314, 941-952.
7. Su, Y.H. and Vacquier, V.D. (2006) Cyclic GMP-specific phosphodiesterase-5 regulates motility of sea urchin spermatozoa. Molecular Biology of the Cell, 17, 114-121.
8. Su, Y.H.*, Chen, S.H., Zhou, H., and Vacquier, V.D. (2005) Tandem mass spectrometry identifies proteins phosphorylated by cyclic AMP-dependent protein kinase when sea urchin sperm undergo the acrosome reaction. Developmental Biology, 285, 116-125 (*corresponding author).
9. Su, Y.H. and Vacquier, V.D. (2002) A flagellar K+-dependent Na+/Ca2+ exchanger keeps Ca2+ low in sea urchin spermatozoa. Proceedings of the National Academy
Sea urchins have been a research model in developmental biology for over a century. They are highly fecund, producing millions of gametes each year. Due to the remarkable usefulness of the echinoderm embryo for modern molecular, cellular and evolutionary biology studies, the genome of the sea urchin Strongylocentrotus purpuratus was sequenced in 2006. The current gene regulatory network (GRN) of the sea urchin Strongylocentrotus purpuratus embryo describes the specification of the endomesodermal territories. However, the specification of the adjacent ectodermal territories of the embryo has been far less explored. Recently, a large-scale gene regulatory network analysis was conducted and an ectoderm specification GRN model was proposed. In the ectoderm GRN, two TGF-ß superfamily members, Nodal and BMP2/4, play key roles in the specification of the oral and aboral ectoderm, respectively. The deduced GRN model provides the first peek at the overall picture of oral and aboral ectoderm specification in the sea urchin embryo and also raises several unanswered questions.
My lab is interested in the roles of Nodal and BMP2/4 in specifying the development of oral and aboral ectoderm in the sea urchin embryo. We are also interested in comparative studies on Nodal in other animals. We use local Taiwanese animals, a hemichordate and a small abalone, to study the function of Nodal in their development. The overall goal of these studies is not only to use a traditional model system, the sea urchin, to investigate important questions that have emerged from GRN analysis, but to also use local animal species with crucial phylogenetic positions to answer fundamental questions. These studies will complement the current ectoderm GRN in the sea urchin embryo, provide further information on how TGF family proteins pattern a specific cell lineage, and shed light on the changes of Nodal function during evolution.
Selected Publications
1. Su Y.H. (2009) Gene regulatory networks for ectoderm specification in sea urchin embryos. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1789, 261-267.
2. Su Y.H., Li E., Geiss G.K., Longabaugh W.J., Kramer A, Davidson E.H. (2009) A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo. Developmental Biology, 329, 410-421.
3. Churamani, D., Boulware, M.J., Geach, T.J., Martin, A.C., Moy, G.W., Su, Y.H., Vacquier, V.D., Marchant, J.S., Dale, L., Patel, S. (2007) Molecular characterization of a novel intracellular ADP-ribosyl cyclase. PLoS One, 2(8): e797.
4. Nam J, Su Y.H., Lee P.Y., Robertson A.J., Coffman J.A., Davidson E.H. (2007) Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network. Developmental Biology, 306, 860-869.
5. Roux, M.M., Townley, I.K., Raisch, M., Reade, A., Bradham, C., Humphreys, G., Gunaratne, H.J., Killian, C.E., Moy, G., Su, Y.H., Ettensohn, C.A., Wilt, F., Vacquier, V.D., Burke, R.D., Wessel, G., and Foltz, K.R. (2006) A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Developmental Biology, 300, 416-433.
6. Sodergren, E., et al., (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science, 314, 941-952.
7. Su, Y.H. and Vacquier, V.D. (2006) Cyclic GMP-specific phosphodiesterase-5 regulates motility of sea urchin spermatozoa. Molecular Biology of the Cell, 17, 114-121.
8. Su, Y.H.*, Chen, S.H., Zhou, H., and Vacquier, V.D. (2005) Tandem mass spectrometry identifies proteins phosphorylated by cyclic AMP-dependent protein kinase when sea urchin sperm undergo the acrosome reaction. Developmental Biology, 285, 116-125 (*corresponding author).
9. Su, Y.H. and Vacquier, V.D. (2002) A flagellar K+-dependent Na+/Ca2+ exchanger keeps Ca2+ low in sea urchin spermatozoa. Proceedings of the National Academy
訂閱:
文章 (Atom)